Quadratic-Quartic Functional Equations in RN-Spaces
نویسندگان
چکیده
The stability problem of functional equations originated from a question of Ulam 1 in 1940, concerning the stability of group homomorphisms. Let G1, · be a group and let G2, ∗, d be a metric group with the metric d ·, · . Given > 0, does there exist a δ > 0 such that if a mapping h : G1 → G2 satisfies the inequality d h x · y , h x ∗ h y < δ for all x, y ∈ G1, then there exists a homomorphism H : G1 → G2 with d h x ,H x < for all x ∈ G1? In other words, under what condition does there exists a homomorphism near an approximate homomorphism? The concept of stability for functional equation arises when we replace the functional equation by an inequality which acts as a perturbation of the equation. Hyers 2 gave a first affirmative answer to the question of Ulam for Banach spaces. Let f : E → E′ be a mapping between Banach spaces such that
منابع مشابه
A fixed point approach to the stability of additive-quadratic-quartic functional equations
In this article, we introduce a class of the generalized mixed additive, quadratic and quartic functional equations and obtain their common solutions. We also investigate the stability of such modified functional equations in the non-Archimedean normed spaces by a fixed point method.
متن کاملIntuitionistic fuzzy stability of a quadratic and quartic functional equation
In this paper, we prove the generalized Hyers--Ulamstability of a quadratic and quartic functional equation inintuitionistic fuzzy Banach spaces.
متن کاملCubic-quartic functional equations in fuzzy normed spaces
In this paper, we investigate the generalizedHyers--Ulam stability of the functional equation
متن کاملar X iv : 0 90 3 . 11 60 v 1 [ m at h . FA ] 6 M ar 2 00 9 Quadratic – quartic functional equations in RN – spaces
In this paper, we obtain the general solution and the stability result for the following functional equation in random normed spaces (in the sense of Sherstnev) under arbitrary t-norms f(2x+ y) + f(2x− y) = 4[f(x + y) + f(x− y)] + 2[f(2x) − 4f(x)]− 6f(y).
متن کاملOn approximate dectic mappings in non-Archimedean spaces: A fixed point approach
In this paper, we investigate the Hyers-Ulam stability for the system of additive, quadratic, cubicand quartic functional equations with constants coecients in the sense of dectic mappings in non-Archimedean normed spaces.
متن کاملAsymptotic aspect of quadratic functional equations and super stability of higher derivations in multi-fuzzy normed spaces
In this paper, we introduce the notion of multi-fuzzy normed spaces and establish an asymptotic behavior of the quadratic functional equations in the setup of such spaces. We then investigate the superstability of strongly higher derivations in the framework of multi-fuzzy Banach algebras
متن کامل